An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing
نویسندگان
چکیده
منابع مشابه
An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
This paper describes a simple and instrument-free screen-printing method to fabricate hydrophilic channels by patterning polydimethylsiloxane (PDMS) onto chromatography paper. Clearly recognizable border lines were formed between hydrophilic and hydrophobic areas. The minimum width of the printed channel to deliver an aqueous sample was 600 μm, as obtained by this method. Fabricated microfluidi...
متن کاملInkjet-printed paperfluidic immuno-chemical sensing device.
This paper reports on an inkjet printing method for the fabrication of lateral flow immunochromatographic devices made from a single piece of filter paper by patterning microfluidic channels and dispensing immunosensing inks, requiring only a single printing apparatus. This "paperfluidic" immunosensing device allows for a less time-consuming and more low-cost fabrication compared with the conve...
متن کاملSliding-strip microfluidic device enables ELISA on paper
This article describes a 3D microfluidic paper-based analytical device that can be used to conduct an enzyme-linked immunosorbent assay (ELISA). The device comprises two parts: a sliding strip (which contains the active sensing area) and a structure surrounding the sliding strip (which holds stored reagents-buffers, antibodies, and enzymatic substrate-and distributes fluid). Running an ELISA in...
متن کامل3D Printed Paper-Based Microfluidic Analytical Devices
As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs) attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D) printer, which ...
متن کاملA Disposable Microfluidic Device with a Screen Printed Electrode for Mimicking Phase II Metabolism
Human metabolism is investigated using several in vitro methods. However, the current methodologies are often expensive, tedious and complicated. Over the last decade, the combination of electrochemistry (EC) with mass spectrometry (MS) has a simpler and a cheaper alternative to mimic the human metabolism. This paper describes the development of a disposable microfluidic device with a screen-pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Analyst
سال: 2015
ISSN: 0003-2654,1364-5528
DOI: 10.1039/c5an00909j